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A recently developed implicit method for solving the set of coupled particle and field 
equations arising in particle-in-cell plasma simulation is described in detail. This implicit 
integration scheme is motivated by the desire to study efficiently low-frequency, long- 
wavelength plasma phenomena using a large time step. In particular, this method allows the 
use of a time step which is larger than the electron plasma period, when electron plasma 
oscillations are not of interest, and provides selective damping of the distorted remnant of the 
electron plasma oscillation. The implicit scheme presented here uses particle data directly 
without introducing fluid moment equations as an intermediary between the field and particle 
equations. In an electrostatic model, the essence of our scheme is a linearization of the charge 
density at the advanced time about an explicit approximate density and the computation of 
the incremental correction to the charge density that is linear in the advanced field. We are led 
to an elliptic field equation whose coefficients depend directly on particle data accumulated on 
the spatial grid in the form of an effective linear susceptibility. Prediction and iterative 
refinement of the solution of the implicit equations, and spatial difference representations of 
the equations are given. Residual restrictions on time step are described. It is demonstrated 
that convergence is superior when spatial differencing and filtering are done in a consistent 
manner. 

1. INTRODUCTION 

The most adaptable and reliable tools for study of complex kinetic plasma 
behavior are the “particle” codes. Until recently, the stability of these codes required 
resolution of the electron plasma period in the time integration, even when the 
phenomena under study took place on a much longer time scale. There has been a 
recent advance in particle simulation as the result of the introduction of implicit time 
integration schemes [l-3]. 

The need for implicit time integration to relax time-step constraints in particle 
codes has long been recognized and was analyzed theoretically [4]. There has been 
considerable experience accumulated in the implicit time integration of the equations 
of fluid flow, diffusion, chemical kinetics, magnetohydrodynamics, and many other 
fields. However, application of such methods to particle simulation had been inhibited 
by the very large number of nonlinear equations to be solved simultaneously, propor- 
tional to the number of particles plus the number of zone quantities (electric and 
magnetic fields). Mason [ 1 ] and Denavit [2] overcome these difftculties by 
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introducing fluid moment equations for mass and momentum as intermediaries 
between the particle equations of motion and the field equations. 

Another class of methods found to improve the efficiency of particle codes takes 
direct advantage of the multiple time scales typically present in plasma physics. In an 
algorithm using electron sub-cycling [S ], ions are advanced with a large time step 
much less often than the electrons are advanced and Poisson’s equation is solved. The 
cost of advancing the ions thus becomes negligible in the simulation. In an orbit- 
averaged magneto-inductive algorithm 161, particles are advanced with a small time 
step that accurately resolves their orbits. An explicit solution for the electromagnetic 
fields, dropping radiation and electrostatics, is obtained using a current density that is 
accumulated from the particle data and temporally averaged over the fast, orbital 
time scale. Orbit-averaging reduces the number of particles required in the simulation. 
However, in order to apply orbit-averaging to a model including electrostatic fields 
and extend the simulation to long time steps, an implicit field solution must be perfor- 
med 171. 

Our approach to the implementation of implicit integration differs significantly 
from the implicit moment method. We do not introduce auxiliary equations. In an 
electrostatic model, the essence of our scheme is a linearization of the charge density 
at the advanced time about an explicit approximate density and the computation of 
the incremental correction to the charge density that is linear in the advanced field. 
We are led to an elliptic field equation whose coefficients depend directly on particle 
data accumulated on the spatial grid in the form of an effective linear susceptibility. 
The rank of the matrix equation is determined by the number of field quantities 
defined on the zones, independent of the number of particles, and normally is much 
smaller than the number of particles. Furthermore, the matrix equation is sparse and 
well-conditioned, so thaj solution is convenient with standard methods. Once the 
fields are known, the particle coordinates can be readily solved for serially, one 
parti,cle at a time. We introduced this implicit method in [3] with some examples of 
its use. We considered the stability, accuracy, and synthesis of various time 
integration schemes for electrostatic particle simulation in [S]; this analysis has 
guided the design of algorithms that retain desirable dissipation of high-frequency 
oscillations while minimizing unwanted cooling of the plasma and damping of IOW- 

frequency oscillations. 
This paper greatly elaborates and extends the introductory discussion of the elec- 

trostatic case in [3]. The theory underlying the direct implicit particle method and 
various options and restrictions in algorithm design are set forth here. The algorithm 
in its most elementary form is presented in Section 2, where several examples of time 
integration schemes and solution of the implicit field equation are described. A more 
detailed discussion of the solution of the implicit equations is given in Section 3. This 
includes the iterative refinement of the predicted field, a simple predictor version, the 
problem of consistent spatial filtering, restrictions on time step that limit the direct 
implicit particle method (as well as the moment method), and convergence of the 
iteration scheme. An ad hoc spatial differencing of the elliptic field prediction 
equation leads to a sparse banded symmetric matrix equation. 
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In Section 4, strict application of our approach provides difference equations with 
improved convergence. This is a desirable feature insofar as it leads to a more robust 
code. We show how the implicit contribution to the charge density can be expressed 
as the divergence of a polarization, introduce the susceptibility, and formulate 
Hamiltonian and standard cloud-in-cell linear weighting versions in one and two 
dimensions. The field equation is constructed using a linearization of the actual force 
calculation, so that its solution attempts to ensure that the finite-difference Poisson 
equation is satisfied. We consider the computational complexity of this “strict” 
formulation, and compare to the less conservative differencing of Section 3.4. A 
summary is given and future research directions are outlined in Section 5. The direct 
implicit and moment implicit methods are related and compared in Appendix A. 

The selective reader may find Section 4 and Appendices B and C to be of 
secondary interest. 

The moment equation formulation of (21 and the direct approach ]3,9] have been 
verified in application to ion-acoustic oscillations, two-stream instability, corona 
expansion into vacuum, and gravitational interchange instability, where results have 
already been obtained by conventional methods whose reliability is known but are 
much less efficient in these problems. The moment equation method is being applied 
to electron transport [ 10, 111, and to two-dimensional simulation of low-frequency 
instabilities and shocks [ 121. A direct method is being applied to low-frequency 
instabilities in magnetically confined plasmas and space-physics applications [ 91. 

2. ALGORITHM IN SIMPLEST FORM 

2.1. Time Integration Examples 

The first major issue is the choice of finite-differenced equations of motion for the 
particles which have the necessary stability at large time step and are accurate for the 
low-frequency phenomena to be studied. A class whose application to plasma 
simulation has been analyzed in detail in 141 and in our present work [ 8 ] can be 
written in the form 

x,+1 -xtl 
At =c,(a,+,-aa,)At+c,(a,-a,-,)At+~~~+v,+,,z, (la) 

“PI+ l/2 - “n-112 = 
At 

a ?I* 

These class “c” schemes damp unwanted high-frequency oscillations, while low 
frequencies are very weakly damped, as desired: (Im w)/w = @(o At)‘. Denavit’s 
scheme [2] is a member of this class, as is Mason’s centered scheme [ 11. 
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We have devised a second set of schemes 181, class “D,” of the form 

4(v,+,,, -~,-,,J+4(v,-,,~ -vn-~d+ ... =a,+,At. 

x ntl - x, = v, + ,,* At. 

Pa) 

(2b) 

With appropriate constraints on the coefficients (d,}, this class has the same order of 
accuracy as class C. The presence of the acceleration at only the n + 1 time level 
increases the damping of high-frequency oscillations. The optimum design of these 
difference equations is the first issue in practical implementation of large time-step 
methods. 

2.2. Field Equations 

In all implicit schemes the new positions x, + i depend on the accelerations a, + , 
due to the electric field E,, i . But this field is not yet known, as it depends on the 
density P,, + , of particle positions {x,, i }. Th e solution of this large system of 
nonlinear, coupled particle and field equations is the other major implementation 
issue. 

In the first method implemented for this solution, the fields at the new time level 
are predicted by solving coupled field and fluid equations, in which the kinetic stress 
tensor is approximately evaluated from particle velocities known at the earlier time. 
After the fields are known, the particles are advanced to the new time level, and, if 
desired, an improved stress tensor is calculated and the process iterated. This 
approach has been described in detail in [ 1, 21. 

It is also practical to predict the future electric field E,, I quite directly by means 
of a linearization of the particle-field equations. One form of this method, its 
implementation, and some examples verifying its performance, have been outlined in 
131. Another form is described in 191. Here we present the algorithm in full 
generality, and consider in detail many important issues, such as spatial differencing 
and filtering, and iterative solution of the implicit equations, which have not 
previously been studied. 

The position x,+ , of a particle at time level t, +, , as given by an implicit time 
integration scheme, can be written as 

X n+l =PAh+l +L, (3) 

for unmagnetized plasma, where 0 < p 5 1 and Z, + , is the position obtained from the 
equation of motion with the acceleration a,, , . Our examples can be written in this 
general form by eliminating v, + ,,* between (la) and (lb) or between (2a) and (2b). 
Since i, + , depends only on positions, velocities and accelerations at times t, and 
earlier, it is known. In its simplest form, the direct implicit algorithm is derived by 
linearization of the particle positions relative to G,, + i . 

One can regard the actual position, x,+ i, as %,+ i plus a displacement 
6x =/7At2 a,,,. We form a charge density prji from {gncl}; the actual charge 
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distribution is then p$ r, plus the change Sp brought about by displacing particles by 
the amount 6x = x,+r - Ji,,,. Linearized, this increment to p is [4] 

dp = -v * [pip: 1(x) 6x(x)]. (4) 

To the same order of approximation, the displacement &x(x) of all particles with 
j; n+, g x is obtained with a,, , evaluated at x, i.e., 

6x(x)~/3dt2~E,,+,(x). (5) 

We then have 
h(x) = -V * lx(x) En + , (xl 1, 

where the effective susceptibility is 

(6) 

x(x>=P [p~~,(x~JA(‘=pw~(x)A12. (7) 

With these two source contributions, the Poisson equation becomes, in rationalized 
cgs units, 

V.E,+,=pjp:,-V.OrEn+,) (8) 

or 

-v- 11 +xl v,,, =P%. (9) 

Note that this equation depends only on the particle positions (g,, ,}, and not at all 
on velocity information as is needed in the moment equation methods. 
(For a multi-species plasma, x and pn+, (‘I become sums over species.) This elliptic 
equation is solved by standard methods. The field -V$,, + , and (5) are then used to 
calculate the positions (x,+ I ). Th is algorithm is reminiscent of the method for 
solution for the transverse part of E or the vector potential A in some magneto- 
inductive plasma simulation codes [ 13-151. In the limit 0: At* $ 1, which is the goal 
of this work, we have 

so that the field equation is drastically altered, in the direction of reducing Vc$,+ , 
relative to the solution of the Poisson equation with the same source ph”: r. In the 
opposite limit, wi At* < 1, (9) reduces to the Poisson equation. The spatial 
differencing is described in Section 4. 

We have shown how to refine the approximations used above by linearization 
about a more accurate prediction of x, + I than li, + , , iteration, and a more accurate 
evaluation of Sx. These notions are described in Sections 3.1, 3.2, and Appendix C. 
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3. SOLUTION OF THE IMPLICIT EQUATIONS: PREDICTION AND ITERATION 

When introducing the method in Section 2, we made a linear expansion relative to 

1s ,+,I. The particle displacement 6x is relative to g,,+, , and the susceptibility x is 
formed from (in+ ,}. Th ese would be the new positions (x,+ , } if E, + , were to be 
zero; also, solution of the field equation (8) yields not an increment SE but the entire 
field E,+i. Therefore the field equation is, in effect, a linearization about field values 
(EIp:, ) taken to be zero. 

If we had some prediction of the future fields {E,, , } we might gain accuracy by 
doing our expansion relative to this estimate {Erl i} and the positions {xyi, } 
obtained by using this estimate in the particle equations of motion. 

An issue related to this introduction of a predictor is the desirability of being able 
to iterate to approach an exact solution of the particle-field equations as closely as 
desired. In this section we derive a procedure which refines an estimate (Erl ,}. The 
procedure may be used following a predictor step, and may also be used repeatedly 
as an iteration. In the simplest case, i.e., the prediction E,+ , = 0 followed by one 
“iteration,” the result is the same as from the formulation developed in Section 2. 

In this section we also consider convergence of the iteration, and spatial filtering in 
the implicit field equation, which differs in a subtle way from the filtering procedure 
in a conventional explicit algorithm. We next introduce a simple. ad hoc spatial 
differencing of the field equation that leads to a sparse symmetric matrix equation. In 
addition, we describe time-step restrictions that persist in our implicit algorithm and 
briefly consider the inclusion of a magnetic field in the model. 

3.1. Iterative Refinement 

We begin with an estimate (Erj , ) for the fields {E,,, , }. From the equations of 
motion we have the positions corresponding to these fields, 

(10) 

where j;,+ , is known in terms of present and past data. While these positions and 
fields labelled (r) satisfy the equations of motion, the Poisson equation is not 
satisfied. That is, defining pri, as the charge density corresponding to {x:1, }, we 
have 

V . Et’) # p(‘) (11) 

Our purpose is to eliminate this discrepancy. (We have suppressed the time subscript 
n + 1 in this equation and hereafter.) 

We wish to calculate an improved estimate {Et’+ I)} with which to calculate the 
ix V+ I)} and corresponding {p”+ ‘)) such that 

V . EC’+ t) _ (r+‘) --P * (12) 
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Rewrite this equation as 

V . SE - ,$I = p”) - V . E”), (13) 

where 

,CjE _ E”+ 1) _ E”) (14) 

and Sp is due to the displacements (6x) = (x”+ ‘) - x’~)} which result from SE. 
(These are changes produced by an iteration step and do not correspond to changes 
in some interval of time.) Note that the source term for 6E is the discrepancy between 
V . E”) and p”), which vanishes when the implicit equations are all satisfied. 

Proceeding, we express Sp on the left side of Eq. (13) in terms of 6E. First, 

sx =p/&* ; (E”+ ‘)(X(r+ “) - E(‘)(x(‘))) (15a) 

E /? At2 f ]&E(x”‘) + 6x . VE”‘(x”‘)]. (15b) 

Rearranging, we have 

tjx . I - /3 At2 ; VE”‘(x”‘) 
I 

= /3 At* : SE(x”‘), (16) 

which provides a Newton-Raphson solution of Eq. (15a). However, for now we 
neglect the gradient term, a point we return to in Sections 3.5.2, 3.6, and Appendix C. 
This leaves 

6x g/l At* +6E(x”‘). (17) 

As in Eqs. (4) and (6), 

J/-J = -v . [p”‘(x) 6x(x)] GZ -V . [K SE], (18) 

where the susceptibility is defined in terms of p”), 

X(X) = @“‘(x) ; At* = @co;: At’. 

Combining Eqs. (13) and (18), we obtain an equation for SE: 

V e [(l +x)6E] =p”‘-V e E”’ 

=-v * (1 +x)V&!%. 

(19) 

(20) 
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In an electromagnetic code, implicitly differenced Faraday and Maxwell-Ampere 
equations could be used to obtain advanced fields. This step usually leaves V E -p 
not quite zero. Equation (20) could then be used to reline the longitudinal part of 
E ,,+‘. This correction is in the same spirit as that used in many conventional elec- 
tromagnetic codes [ 161. 

3.2. Prediction and Iteration 

To begin the iteration, we must have a “prediction” EC”. The trivial choice 

E’O’ = 0 

with one iteration reproduces the simple algorithm of Section 2; p”’ and x are the 
same, and Eq. (20), an equation for E (I’ = 6E, is the same as Eq. (9). Thus the 
algorithm in the form given in Section 2.2 and [3 J is a special case of the iterative 
formulation, and the option to iterate can be implemented without significantly 
complicating the code. 

It seems likely that the field E, at the preceding time is a more accurate estimate 

for En, 1 than zero is, at least if E is varying smoothly in time. Using 

E”’ = E II+1 n 

then locates the particles more accurately in forming p and x and we expect the 
source term in Eq. (20), and the solution SE, to be smaller. It is important to choose 
a time-differencing scheme which damps the Nyquist mode (odd-even in time step) if 
this choice for E”’ is used. 

A linear stability analysis with any choice of EIpl i recovers, as desired, exactly the 
same linear dispersion relations for cold plasma oscillations as those derived in [ 8 1. 
However, a judicious choice for Ejp:, improves nonlinear convergence; see 
Section 4.4. 

The cycle of time integration for a predictor scheme might proceed as follows: The 
cycle begins after the field solve for the predicted field Ei”, and with {XL”) and 

{“n-wb 

l Go through particle lists. 

Using Ey’ evaluated at xr’, advance each xh”, v,-,,* to XL”, v,+ ,,*. Using XI,” and 
v,+ ,,2, calculate the temporary I?,‘+, ; and with Ejp: , = Ey’ evaluated at r?,, , 
extrapolate XL” to xIp: i collecting pF:i and xpi’. Replace XL” with xr: I in the 
particle list. 

l Solve 

-V+ [1 +x;‘;,(x)]V#L’:,=V. [~~“;,(x)E~o~,]+p~;, 

from which Eyl, = -V#Fi, which overwrites Er:, . This field equation was obtained 
by adding V . [ 1 + xlp: i] Er: ’ to both sides of (20) and using E!,‘:, = Er:, + 6E,, + , . 
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l Repeat cycle for the next time step. 

We did not form pn (‘) from {x(l)} because we do not use it for anything. Note that 
we need process the particle list ‘only once per time cycle. 

If an iteration is desired, the computational cycle departs from the prediction cycle 
after the solution for E’,‘: r. 

l Iterate particle equations of motion. 

with E’,1:, evaluated at xip: , , advance x’,o: , to XI’:, using the approximation to the 
equation of motion, 

and collect p’,‘:, and x’,‘:,. Replace xrj, with x’,‘: , in the particle list. 

l Solve 

-Vh [1 +,y’,‘:~(x)~V~~*~,=V~ [xj,':,(~)E::,I+~hl:, 

for #‘,‘:,. Overwrite Er: i with Ej,*:, = -V#‘,z:, . 
At this point a convergence criterion is applied to decide whether to iterate further 

or to advance to the next time step and repeat the computational cycle beginning with 
a new prediction. As given here, iteration requires retention of j; in the particle list. 
Only one pass is made through the particles on the prediction step and again on each 
iteration. 

3.3. Spatial Filtering 

Smoothing in space is often introduced in particle simulations, to reduce 
nonphysical effects introduced by the spatial grid [ 17, 181 and to reduce the strength 
of the Coulomb force at small distances [ 191. Such smoothing is allowable in 
simulation of weakly collisional plasmas because their collective behavior is 
dominated by long-range electromagnetic forces which are not affected by a well- 
chosen smoothing. We wish to be able to introduce smoothing into the implicit 
algorithm without overly complicating the field equation to be solved. 

In a conventional electrostatic plasma simulation code, the Poisson equation is 
often solved by Fourier transforming p, multiplying p(k) by a function K-‘(k) which 
is rkP2, and inverse Fourier transforming to obtain d(x). In this method, smoothing 
is trivially introduced by including an additional factor such as eekda4 in K - 2. 
However, this Fourier method is not directly applicable to our field equation (9) or 
(20) because the operator V . [ 1 + x(x)] V is not invariant under translation in space, 
as x is position-dependent. 
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Quite generally we can introduce smoothing both on p before, and on 4 after, the 
Poisson solution. We solve 

-V’# = s,p, (21) 

and the particle force is then 

F = -qVS, 4, C-22) 

where S, and S, are positive semi-definite smoothing operators. This is what happens 
in the useful intuitive viewpoint of the particles as tenuous extended clouds of charge, 
so that S, = S,, and is a convolution operation [ 19, 201. We now show how to 
introduce such operators into the field solution. 

The smoothing must be included in the estimation of the change Sp associated with 
a change & in the future potential, Eq. (18), and in the use of Sp in the field 
equation (13). We now have 

-s,pcr, - v2f” = v2 S# + s, sp (234 

=V26#+S,V [xVS,S4] 

=v* [l +S,xS,]V6# Pb) 

= v . [s;’ + S,xJ V(S, sq+>, (23~) 

where the left-hand side is known and the right-hand side has been manipulated 
through several forms. We assume S, and S, commute with the divergence and 
gradient operators. Note that operator S, applies not just to x but to xS,V 84. The 
locality of the field equation operator, and therefore the sparsity of its matrix 
representation, have been degraded; this complicates the solution of (23b) or (23~). 

We could rely solely on S, and abandon S,, but let us first try solving Eq. (23~) 
for (S, S#) instead of S#. After operating on Eq. (23~) with S,, we have’ 

-(S,S,p”‘} - v*(s,q+“} = v * [ 1 + S,S,x] V(S, S#} (24) 

or 

-pj” - v2qy = v . [ 1 + S,S,x] v S@,. (25) 

We add smoothing by applying S,S, to the density, ps = S,S,p, and use this in 
Eq. (25), whose solution is S#, z S, S#. Then -V$y+‘) = -V(4:’ + 64,) is used to 
advance the particles; 9 itself is never calculated. Handling S, in this manner 
produces the same calculational steps as if only p were smoothed, i.e., Eq. (23b) with 
s, 3 I. 

’ Note that S, 84 cannot be obtained by an operation of S2 on the solution 0 of the unsmoothed 
equation (20). 
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It is tempting to solve Eq. (9) or (20), smooth the solution 4, and use this to 
advance the particles, but this is not consistent since the smoothing is then not taken 
into account in estimating Sp (the x term). In Section 3.6 we show that inconsistent 
smoothing degrades convergence. Barnes et al. (91 have found in simulations that 
only consistent spatial smoothing in the form of (25) gave them reasonable results; 
analysis such as this gives useful guidance in code applications. 

3.4. Spatial Differencing and Implementation 

So far, E has been defined for all x, and we have taken gradients of E and other 
fields. In this section we describe the simplest formulation of finite difference implicit 
field equations that still preserves their essential features, yet requires no more 
computational effort for the particles than is needed in an explicit code. Section 4 
develops a more rigorous formulation. 

Following Eq. (4), we use a representation of Sp as an exact difference analogue to 
the divergence of a polarization P = p 6x. In two dimensions, 

aPj,k = - 
‘xJ+ 112.k - ‘x,j- L12.k Pr,j.kt I/2 - Py,j,k- l/2 - 

Ax AY . 

(See Fig. 1.) This is a charge-conserving representation of Sp in that the change SQ of 
the charge in a volume, which is a sum of apj,k, involves only P at the surface. (This 
is the difference analogue of Gauss’ integral theorem.) 

In one dimension, the simplest representation of P =x 6E is 

‘j+ II2 = -Xj+ 112 
Qj+ I - @j 

Ax ’ 

The resulting field equation couples three 4’s in one dimension, and either five or nine 
4’s in two dimensions, depending on how the x’s are defined. Ideally we would like to 
calculate x from the p for each species, or at least to have to accumulate no more 
information from the particle positions than is necessary already to form p, as these 
accumulations are computationally expensive. For example, 

or 

(284 

(As usual, summation of pq/m over species is understood.) The choice a = 0 
produces an average of p; perhaps a may provide useful tuning in the spirit of 1211, 
in regions of strong gradients. If the range of a is restricted so that 1 +x remains 
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positive, then it is shown in Appendix B that the combination of (26~(28) leads to a 
field equation with a positive matrix. The form of (28b) is motivated by preliminary 
results on stability with non-strict differencing which indicate that it is most 
important that x not be too small. 

This one-dimensional representation of P is the same as arises in Section 4.2 in a 
systematic construction of field equations, but x,~+ ,,> here differs from (62). In two 
dimensions we could similarly express P in the form of (6.5). but form x, and x,, more 
simply from p rather than as in (66). 

We note that the spatial differencing of the fluid equations in the implicit moment 
algorithms [ 1, 2, 7, 121 is not exactly consistent with that of the particle and charge 
density equations. No difficulties in these codes have been attributed to this incon- 
sistency, which encourages us to expect success with straightforward differencing in 
direct implicit methods, as has been the experience of Barnes et al. 19 ) in their two- 
dimensional applications when consistent smoothing is added. 

3.5. Restrictions 

Although we have overcome the stability limit on CO, At. there remain some 
restrictions which involve At. 

Dispersion function results, such as Eq. (29) below, apply strictly only when the 
particle-field equations are solved exactly. Results may differ if iteration is not taken 
close to convergence. Ideally we prefer to process the particles only once per time 
step; with one iteration, the choice of starting values (Section 3.2) may become 
critical. 

3.5.1. Electron Transit Time Limitation on v At/L 

When a particle moves in one time step a distance greater than a scale length L for 
spatial variation of fields, the particle does not sample the field sufficiently closely in 
space to respond correctly to the field structure. This is illustrated in the case of 
sinusoidal field variation and a class of time integration schemes introduced in [4 1 
and examined further in [SJ. The dielectric function for this case, with finite At but 
ignoring Ax, can be written [ 4 ] 

E = ~~~~~~~~~~ + co: At* [co + c, e’““&(k At) t c,eZ’“Af&(2k At) t . . . 1 

= 1 + 0; At2 
i 
c, t y (s t c,) eiwSA’~o(sk At) 

x-1 I 

where c,, = p, and 

(30) 

For a Maxwellian velocity distribution fo(k At) = exp(-$k*v: At’), where v: = T/m, 
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and the series in Eq. (29) converges quickly for ku, At 2 1, the limit of present 
interest. 

At very low frequency, as in a sound wave, we require that electrons reproduce 
Debye shielding, and perhaps also Landau damping, 

1 
&=l+ - + resonance terms. 

k’l;, 

For kv, At Xl, the implicit code produces instead, from (29) and (30), 

E z 1 + 0: At* [co + (1 + c,) exp(iw At - ik2vf At’)]. (32) 

Comparing (31) and (32), we see that E in the implicit code is larger by a factor 
z/?k’u: Ar* than the correct result, when /IO; At2 2 1 and k2vf At2 21. The implicit 
code shields too strongly at short wavelengths. Accurate shielding requires 
k2vf At2 2 1. When Q.I~ At2 9 1 this restricts us to wavelengths large compared to a 
Debye length, since 

Unfortunately, therefore, applications such as ion-acoustic turbulence, for which 
k,l, ‘v f, do not benefit much from implicit integration. 

At short wavelengths, from (32) we see that the implicit algorithm is at least 
stable, and errs in the direction of making SE too small. Thus, it appears that the 
presence of short wavelengths may not interfere with the longer wavelengths which 
are simulated accurately. Finite kv, At does not appear to affect convergence of our 
solution process (Section 3.1) whereas kv, At 2 1 does upset convergence of the 
moment-implicit method 12,221. Also, even in the direct method, when E,, + , in (10) 
is evaluated at x, rather than XT:, , a kv, At constraint reappears 191. 

3.5.2. Trapping Frequency Limitation on wtr At 

We now consider the magnitude of the neglected gradient term in Eq. (16) for 6x. 
In one dimension, near a minimum of q#, the term is 

-P At2 ;g = +p(w,, At)‘, 

where mtr is the frequency of oscillation of a particle “trapped” near the bottom of 
the potential well. Since ,8 is P(l), we see that the neglected term is important when 
At is too large to resolve trapping oscillations. 

We can express this condition in other instructive forms, e.g., 

(o tr At)’ = (kv, At)2 @ 
T, . (34) 
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As shown in the preceding section and in [ 8 1, accuracy may require kv, At 2 1. Also. 
the physics of the situation under study often limits variations in 4 to sT,/q. If both 
these conditions are met, then (34) shows that the trapping frequency condition is 
satisfied. By a similar argument, 

(cut, At)’ = (kv, At) +. 
I 

Presumably most particle velocities are much larger than their increment a At in one 
time step; if so, the condition kv, At 5 1 is the more restrictive. 

We can also rewrite the left side of (33) as 

p At2 $g =/3(o,, At)* ,p’Pneri / . 
e electron 

When (wpe At)’ > 1, we see that the net charge imbalance must be much less than the 
total electron charge density, i.e., the plasma cannot be grossly non-neutral. 

Let us consider briefly how the field algorithm changes if we do not neglect the 
term (33), and use the Newton-Raphson expressions (37) for 6x and (39) for x. Near 
a minimum of q#, we see that x is reduced by the factor ( 1 + p(w,, At)’ 1. The effect 
of neglecting the VE term is to make the solution V Sd too small by approximately 
this same factor. At a maximum of q# such that the neglected term is > 1, the 
denominator of (39) is negative. If 1 +X becomes negative as a result, then the 
operator -V . (1 + x) V becomes negative in this region (Appendix B), which 
invalidates some methods for solution of the field equation in two dimensions. and 
may have more serious implications. In most of this paper, except in Section 3.6. 
where it affects convergence, and in Appendix C, we neglect this VE correction. 

3.5.3. Numerical Cooling or Heating 

A secular acceleration, which can artificialy cool or heat the plasma, is a side 
effect of damping introduced to suppress high frequencies. This effect is discussed in 
detail in a companion paper 18). In brief, in the presence of a sinusoidal wave, the 
nonphysical acceleration scales with field strength as measured by (wt, At)‘, and is a 
function of (c~ - k . v) At whose form depends on the difference equations and is 
most troublesome with schemes whose damping is lirst order in At 11 1 rather than 
P(At”). 

3.6. Convergence of the Iteration 

In order that the iteration improve the solution of Poisson’s equation (12) 
successive iterations must reduce p-V . E to zero. We now calculate the rate of 
convergence with use of Eqs. (13)-(20). Having solved (20) for dE”+ ‘) we update 
position and field to xcr+‘) and E”’ ‘). We compare the new residual 
P crt’) - V . EC’+ ‘) to the old, p(‘) -V . E(‘) (which is the source for 6E”’ I’). The 
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new residual is [p(‘+ ‘) - V . EC’+ I)] = [p(‘) - V . Et’)] + ]&(‘+ I) - V . 6E(‘+ I) ]. We 
use (20) to express the old residue, and (18) to express Sp in terms of 6x. The ratio is 

IP cr.+ ‘) - v . EC’+ l) ) = JV . [(f) &“+ 1)) _ p(‘) &(‘t “]I 

Ip(‘) - V . @‘)I (v. (1 +~(~))6E(‘+‘)j * (36) 

Now it is necessary to specify the expressions used for 6x and x. 
The equation of motion (10) leads to a relation between axCrt ” and 6E(‘+ ‘) given 

in (16). In one dimension, 

Jx(r+ 1) = pN- I 92 @(r+ I), (37) 

where N E (1 - /3qm -’ At2 aE”‘/ax). With xCr) given by (19), 

IP (r+ I) - V . Et’+ ‘)I ‘v 1 V . (N- ‘X”‘/lqm - ’ At2 &E”‘/cYx) 6E j 
Ip(‘) - V . @‘)I - /V. (1 +x(~))~E”‘+~)( (38) 

which we require to be less than unity for convergence. We recognize (wtr At)’ = 
lqm-’ At2 i?E”‘/cYxI, where mtr is the electrostatic trapping frequency, in the 
numerator of the right side of (38); thus, convergence improves for (wt, At)’ 6 1. 

If we retain the Newton-Raphson correction to the susceptibility, 

X (39) 

then the right side of (36) vanishes to the order calculated, viz., through W(o:, At’). 
Provided that wFr At2 5 1, this significantly accelerates convergence of the iteration 
scheme. This condition is discussed in Section 3.5. 

These convergence properties differ markedly from the convergence of the implicit 
moment method with explicit kinetic stress tensor, which requires kv, At 2 1 
[ 1, 2, 12, 221, generally a more restrictive condition. 

With consistent spatial smoothing and inclusion of the Newton-Raphson 
correction to x, the residual p(‘+ ‘) - V . E”’ ‘) calculated as in (36) cancels through 
orders unity and /3w:, At2. However, with either forces or charges inconsistently 
smoothed, cancellation of order unity terms does not occur and we obtain residuals 
like 

IP (rt 1) _ V . EC’+ 1) 

Jp(‘) - V . Et’)) 
) = IV. (&s”, - S,S,)x”’ 6E(‘+“( 

/V. (1 +~(~))6E(‘+i)j ’ (40) 

to leading order, where ,!?,S, - S,S, gives the difference of the inconsistent 
smoothing operators S,S, from consistent smoothing S,S, . For typical smoothing 
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operators, convergence is most severely degraded for plasma densities and/or electric 
fields that vary rapidly in space. 

In summary, we have demonstrated that convergence is faster than linear when the 
susceptibility x in the field solve is consistent with the position increment 6,~ in the 
equation of motion. This follows directly from the construction of the implicit field 
equation. In an actual code, retention of this property depends on how the equations 
are finite-differenced and on other issues; see Section 4.4. 

3.1. Magnetized Plasma 

In [8] we proposed generalizations of the class C and D schemes to include a 
magnetic field B. Here we outline how these two generalizations affect the solution 
for the advanced field. In one case the field equation does not change at all; in the 
other x changes greatly, to a tensor which introduces an antisymmetric term into the 
lield equation. 

For class C we use (1) in which (lb) becomes 

V ntl/2 - v,-l/2 V 

At =a, + nt I/2 + vn- 112 

2 x 9, 

where a, is due only to the electric field and Q F qB/mc. Since x,+ , depends on a,, + , 
only through the term ~,,a,+, , ,y is unaffected by the magnetic field, and the field 
equation is unchanged. 

We next generalize the D schemes (2) to include a magnetic field. First we factor 
(2a) into a recursive filter on a followed by leap-frog integration of v. Then, magnetic 
forces are incorporated into the leap-frog equation in the usual way 123 ]. The 
equations are 

aA = Vtlt1/2-V,-I/2 

At 
vntw + vn-l/2 x 51 

2 3 

X ?I+1 - xn 
At = v,t I/2' 

(42b) 

These difference equations are equivalent to Eq. (35) in [8]. (This factorization has 
been used by Barnes and Kamimura 19,241. However, they apply the recursive filter 
to the field defined on the grid. Their non-Galilean invariant step changes dispersion, 
stability, and momentum conservation properties; see [8], Appendix B, and 191.) For 
simplicity we consider components perpendicular to Q in the limit (0 At)’ $- 1, for 
which the dominant terms produce the E x B drift. The susceptibility becomes a 
tensor. 

2 02At x=w2 ax,+1 ---P 
’ aa,+, d, 0’ 

n x I. 
(43) 
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The corresponding term in the field equation is 

V*(y*V#)=-v* 
2 w2At 

d+-+2xv$. 
0 1 (44) 

Multiplying by another potential function w and integrating by parts, 

j.dxyv.(X.v/)=j.dx~~n.v~xvs 
0 

=- (‘dx #V. 01. VW). 

Thus this new term is antisymmetric. The differential field equation operator remains 
positive (however, the difference form requires care; see Appendix B). These 
considerations affect the choice of methods for solving the matrix representation. 

4. STRICT SPATIAL DIFFERENCE EQUATIONS 

In this section we apply our concepts of constructing a field equation using the 
functional derivative ap/aE to numerical algorithms actually used for the force 
calculation, in which p, 4, and E are defined on a spatial grid. A rigorous, conser- 
vative approach is taken with the spatial differencing and interpolation. For the 
resulting field equations we are able to give an analytic argument for convergence to 
solution of the coupled field and particle equations. 

In our spatial-difference representation of these equations, Eq. (18) becomes the 
gradient of a zonal p with respect to particle position, and 6x in Eq. (17) depends on 
the electric field in two zones, using the usual interpolation. In this way we are 
assured that the density P,,+ , of final particle positions (x,+ ,} satisfies the code’s 
representation of the Poisson equation, -V’#,,+ , = pn+, , so that desirable features 
built into the time-differencing scheme will be realized in practice. We therefore term 
this a “strict” implementation. Strict differencing preserves the convergence properties 
derived in Section 3.6. Simplified differencing (Section 3.4) and inconsistent spatial 
smoothing (Section 3.3) both lead to slower convergence. 

In the following we obtain specific expressions for the quantities that would be 
calculated in practical implementation. We consider first a Hamiltonian’ multi- 
dimensional algorithm, which is useful as a mathematically clean prototype and study 
case, and is also more stable to the spatial-grid instability in [ 121, then a commonly 
used momentum-conserving algorithm. Lastly, we compare the computational 
complexity and convergence properties of strict and simplified schemes. 

’ These are sometimes called “energy-conserving” algorithms, although energy is conserved only for 
exact time integration [ 25 1. 
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4.1. Sp Expressed as a Divergence 

In Section 3 we expressed Sp as a divergence of a polarization, 

sp = -v . P. (45) 

and its difference equivalent, (26). For the gridded case, we show how to evaluate Sp 
in this manner for p as actually collected from the particle positions. Writing Sp this 
way is particularly simple for the common linear choice of weighting function S, 
clarifies many later steps, and leads to a first integral of the field equation. 

Let us consider why we should expect such a result more generally. The charge 
density is defined on the grid by 

pj = ~ qiS(Xj- ‘i>, 

where i and j are particle and grid indices and {X j} are the locations of the grid 
points. The function S is designed so that 

V,\‘S(X,-x)- 1, 

for all x, which means that 

(48) 

when the sums are taken over the whole system. Here, I’, is the volume of a cell, 
equal to Ax in one dimension. In words, the total charge on the grid is the same as 
the total particle charge. Therefore it does not change as a result of small 
displacements (6x). Further, the change in the charge on the grid points within some 
boundary involves only the particles in cells near the boundary. These are charac- 
teristics of an integral of a divergence. In the gridded case, the integral becomes a 
sum in which interior contributions cancel. 

We now assume, as is commonly the case, that S is a spline weighting function, 
S,(x), where S, is the nearest grid-point weighting, S, = S, * S, (* denotes 
convolution) is the linear weighting, S, = S, * S, * S, = S, *S, is a quadratic spline, 
and so on ([25, Section VII]). Proceeding for now in one dimension, we have 

dpj = - x qi 6Xi SL(xj - xi)Y 
I 

in which the derivative S; can be expressed in terms of the next lower-order function 
S m-1 : 
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This result follows from the identity S, E S, * S,,_ , . Now we can write 

ijp,i = _ ‘jt I.ldxpj- l/2 , 

the one-dimensional version of (26), with 

For the simplest and very popular case of m = 1 (linear weighting), 

(51) 

(52) 

is just a sum of polarizations q&xi of all particles in cell j + { (i.e., jAx < xi < 
(j + 1) Ax), normalized to be a polarization density. 

In two dimensions the usual generalization of S, is 

SAX, Y> = S,(x) SAY). (54) 

The charge density at grid point (j, k), which is located at (Xi, YA) E (j Ax, k Ay), is 

pj,k = \‘ qism(x,j - xi> sm(yk -ui)* (55) 

Using (50) for each factor of S,,,(x, y), the variation of Sp due to particle 
displacements is again in the form of a divergence of P, as in (26), where now 

‘y.j.k+ L/2 = ~4i6yiS,(X,-Xi)Sm-1(~k+1/2-Yi). (56b) 

The spatial relationships among p, P,, P,,, etc., are illustrated in Figs. 1 and 2. 

4.2. Hamiltonian Case 

Following [ 17, 25 1, the force calculation is 

3 vc~$j!IdXIVS(Xj-X)] ’ [VS(Xjs-X)], 
j’ 

(57) 

a@> = - 0 VV, x 4i,s(x,, - x), 
1 

(58) 
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k+l 

k 

‘,P, 

px p (’ px ,., ) 

“PY 

k-l 

J-1 I 1+1 

FIG. 1. Spatial grid, showing where p, ), P,, and P,, are defined; 1, and xY are colocated with P, and 
P,. 

Hamiltonian 

I j+l 

(a) 

Momentum-comerviny 

k+l 

k 

k-l 

i 

xx,hE 

(b) 

FIG. 2. For bilinear weighting (m = I) the displacements 6xi for particles in two cells (hatched area) 
contribute to P, (see (56)). In turn, these displacements are due to Sd at the circled grid points in 
Hamiltonian models (a), and i5E at the same grid points in momentum-conserving models (b). Deter 
mination of P, requires x at only three locations for Hamiltonian (a) vs the six locations where 6E is 
given in momentum-conserving models (b). The values of x indicated in the figures are specific to the P, 
at (j + +, k). For P, elsewhere, different x’s are required. However, the different x’s at any grid point 
depend on the same set of particle moments, and symmetries exist that further reduce the calculations, as 
can be deduced from Eq. (66). 
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where pi is given by Eq. (46), and I’, is the volume of a cell. From Eq. (46) we find 

d/lJ = - 2 qi &Xi ’ VS(X,- Xi) 
I 

=I -vc\‘+,.PdrZ;m, ~ ’ VS(Xj- Xi)] ’ [VS(Xj, - Xi)]. 
1’ I 

(59) 

If we express the particle sum in terms of an integral over density, then we can 
represent 

~/jA,ls:... 
i mi 

by Idx~~~(x)At’...=1dxX(x)... 

using (7). The equation for 84, is then 

pf” + (V2fP))J = -(V’ Sqh), - dpJ (6W 

= v,Ssm,,jdx[Vs(X,-x)]. [VSP+x)][l +x(x)]. (60b) 
J’ 

This equation is remarkably similar to the continuum result, Eq. (20). 
There are some points to note: The sparsity of this matrix equation is the same as 

for the Laplacian alone. The matrix is symmetric, as is clear from the form of 
Eq. (59), and we show in Appendix B that the matrix is positive; these properties 
facilitate its numerical solution. To form the matrix, one must collect more infor- 
mation from the particle locations than in an explicit code, in which one needs only 

kJ}* 
The simplest example of this differencing is worth stating explicitly. Choosing 

linear-interpolation weighting for S, in one dimension we find 

-$ [ t1 +Xj+I/Z) "'j+~~"' - (l +Xj-l/2) 

@j- S$j-1 

Ax 

I 

(61) 

for the right-hand side of Eq. (60), with 

in which the sum includes only particles in cell j + l/2 (i.e., j AX < xi < (j + 1) Ax). 
This is a very simple and direct representation of Eqs. (19) and (20). 

Referring to Eq. (61), we recognize that 

‘I+ 112 = -Xj+ 112 
Qj+ L - &j 

Ax 
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for the linearly weighted Hamiltonian code, which is the same as we choose for 
simplified differencing in Section 3.4. 

More generally, for one-dimensional spline weighting we can use the results of 
Section4.1 to factor the difference operator in (60). Using (50) for S&(X, 
first find, in one dimension, 

xi) we 

Pjt I/2 = ‘X~~~~~~~~~AI’S,-,(X~+,,:~-X~)S~(X~.-X~), 
j ’ i I 

Using (50) for Sk(Xj, - xi) then gives 

where 

For linear weighting (m = l), x is nonzero only for j’ =j. 
In two dimensions with linear weighting we find 

‘.r,.i+ II2.k = - 1 xx,j+ 1/2,k,k’ 
&j+ I,k’ - @j,k’ 

k’ Ax 

with 

(63) 

(64) 

(65) 

(66) 

where the sum is over only the particles in the hatched area of Fig. 2a, and x is 
nonzero only for k’ = k and k f 1. 

4.3. Standard Linear- Weighting Case 

We now construct the field solution algorithm corresponding to the most 
commonly used method for coupling the particles and grid. We refer to this as 
“momentum-conserving” because momentum is conserved (at least in an explicit 
code) whenever the field boundary conditions so indicate, e.g., in an open or periodic 
system [ 18, 261, but not in the presence of metallic boundaries. 

Charge is collected using Eq. (46), as in the Hamiltonian codes. The Poisson 
equation and E = --V$ are solved by a variety of ad hoc spatially centered methods 
to obtain E. The particle acceleration is then obtained from 

ai = : I’, x Ep S(Xy - xi) 
J’ 

(67) 



DIRECT IMPLICIT PLASMA SIMULATION 129 

rather than Eq. (58). Use of the same function S in field interpolation and charge 
collection, and location of all components of E at the same locations as p, are the 
keys to momentum conservation [ 18, 261. 

4.3.1. Susceptibility 

The calculation of &J is given in Section 4.1. From Eq. (67) we obtain 

6Xi =P At* ~ V, ~ SEI, S(Xj, - xi) 
1’ 

(68) 

which we substitute into Eq. (49) for Sp to obtain 

Spj = -I’, x SEj, 2 p At* $ S(Xj, - Xi) VS(Xj - Xi) 

j’ i I 

(69) 

This is used in the Poisson equation to obtain the field equation to be solved in a 
code. In one dimension, this is the result given in [3]. As noted there, Wj,j, is zero 
unless lj’ -j 1 Ax is smaller than the support of S(x) (i.e., where S # 0), so the 
coupling does not extend far. 

Some simplifications can be recognized through the use of Eqs. (5 l)-(52) when S 
is a spline function. Substituting (68) into (52) and reversing the order of summation, 

'jtl/*= A ‘~~Ej~~At’~~A~S,(Xj,-~i)S~-,(xj+,,,-xi) 
i’ I 

which is a convolution of SE and a (slightly) nonlocal susceptibility. For linear 
splines, m = 1, we have (see Eq. (53)), 

Xj+ 112.j = x /IAt2$S,(Xj,-xi). 
iEjtll2 , 

Only two terms contribute, from j’ = j and j + 1: 

Pjt I/Z = fOlL,j SEj + XR.jt I aEj+ 1) (72) 

with fX,,j E Xj+ 1/2,j and hR,j+ 1 E xi+ I/z,j+ 1. 
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4.3.2. Field Solve in One Dimension 

We now set up the field equations in a form which has an obvious first integral. 
The one-dimensional field solve is commonly written as 

4j+lp24j+fj-l =-p, 

Ax= .I ’ 

We solve instead for 

Ej+ l/2 = - 
4j+l -#j 

Ax ’ (74) 

with which the above field solve becomes 

(75a) 

Ej = Ej+ l/2 + Ej- I/2 

2 * (75b) 

Using Eq. 51) the field equation is 

CaEj+ I/2 + 'j-t l/2 ) - (%- ,,2 + Pi- ,,2) = Ax[p”’ - V + E”‘li. 

This has a trivial first integral from which we obtain Dj+ ,,= = &Ej+ ,,2 + Pi+ ,,2. Now 
express P in terms of 6E using (72) and (75b): 

Dj+1/2=dEj+ I/Z + $IXL.j(dEj-1/2 f aEj+ I/Z) +XR.j+IIBEi+ I/Z + aE/+J;2)I 

= 4XL.j SEj- I/2 + I1 + b0lL.j + XR,j+ ,>I dEj+ l/2 + $XR,j+ 1 aEj+ 312. 

This is a tridiagonal matrix equation for &F, which is easy to solve. Since x > 0, the 
matrix is positive and diagonally dominant. 

If we solve for S# instead of 6E, and do not make use of the first integral, the tield 
equation has a pentadiagonal matrix which is the product of three matrices, one of 
which is the tridiagonal matrix above. 

4.3.3. Another Form 

We can instead interpolate from the electric field at half-integer points j + 4 
(although momentum conservation is lost): 

a, = 4 Ax1 Ejs+ ,,2Sm(Xj,+ I,z -xi) 
m i ’ 

(76a) 

=~Ax\‘ 
m 7 

s~(x~,+,,~-~~). (76b) 
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Using (52), 

131 

(77) 

where 

For linear weighting, this x is nonzero for j’ =j and j f 1. Although x is more 
strongly local than in the preceding case, the field equations remain tridiagonal for 
SE or pentadiagonal for 84. 

43.4. Field Solve in Two Dimensions 

In two (or three) dimensions we are not able to make such a simple integration of 
the field equation. Use of the polarization vector P and (26) still helps us set up the 
difference equations. In order to form P,, P, at grid points (j f +, k), (j, k k +), and 
thence cJP~,~, we need 6E at adjacent grid points (j, k), (j f 1, k), and (j, k f 1). In 
the usual scheme with centered differencing of 4, this would require S# from all the 
neighboring grid points and would therefore couple 84 at 21 grid points. This can be 
seen by rotating the pattern in Fig. 2 by 90 degrees to account for Pr,,i.ki ,,*, 
'x,j- liZ,kT and 'y,j,k- l/2' These require 6E, and 6E, at the nine grid points shown in 
Fig. 2. In turn, these fields require S# at the 9 grid points shown, plus three additional 
grid points on each of the four sides, accounting for the total of 21. 

4.4. Convergence of the Iteration Including Grid Effects 

In Section 3.6 we examined the convergence of iterative solution of the implicit 
field equation in the absence of spatial differencing effects. We calculated the ratio 

IP li;;;;)~--; ;(;;;+v[cr) - v * EC') 0 and found that the numerator vanishes through 
ZPqm- At2 &(‘+‘) for consistent representations of axCr+ ” 

and xCr) (see Eqs. (37) and (39)). This follows directly from the construction of the 
implicit field solution. However, there are some qualifications. 

When a particle crosses a cell boundary as a result of the increment 6x and linear 
weighting is in use, the resulting Sp due to this particle is not linear in 6x even to 
leading order, but is piecewise linear. With “subtracted dipole” weighting [27], 6p is 
discontinuous, vitiating the linearization. The number of particles which cross is 
proportional to 6x and the number density. When higher-order spline weighting is 
used, the linearization is more accurate in that &S/ax is continuous; however, Sp now 
includes small terms quadratic in 6x. All these nonlinearities are omitted in both 
direct and moment implicit field predictions. The resulting error can be reduced by 
linearization with respect to an improved prediction of the orbit, obtained using 
E’R:, = E, instead of 0, for example (Section 3.2). 

When simplified differencing is used, such as in Section 3.4, two additional types of 
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errors can occur that contribute to ]p(‘+‘) - V . E”’ I)/, The first was encountered 
already in the gridless case (Section 3.6) and arises from the inconsistency of xfr’ and 
the equations of motion leading to 8x(“+ I) and p (rt’). The other error is due to the 
different representations of X’~’ and V . XE on the spatial grid in strict and simplified 
schemes. A loss of convergence results that is very similar to that suffered with incon- 
sistent spatial smoothing, and the analysis is similar to that of Section 3.6. With a 
representative calculation like that leading to Eqs. (36) and (40), we obtain 

IP 
(rtl) -V. E(‘tl)l = l{V .x(r) &(“tl))‘-V .X(r) @‘+“I 

Ip(‘) - V . EC’) 1 JV. (1 +x(‘))(SE(~+‘)I (79) 

to leading order, where V . x6E is a representation using strict differencing, and 
{ . ..}’ indicates the simplified-differencing form. 

An instructive example is furnished by considering the simplified scheme in 
Section 3.4 and the strictly differenced scheme of Section 4.3. The numerator of (79) 
is due to the difference between the two evaluations of Sp = -V . P = -V s ,y 6E. For 
the simplified scheme in one dimension, (27) and (74) give 

pi+ I/2 = -Xii I,‘2 
@jt I -84. 

Ax ’ =Xi+ I,> dEi+ I/Z* 

and x~+,,~ is specified by (28). For linear charge weighting the strictly differenced 
scheme uses, from (72) and (75b), 

Pj+lp = bXL,j(aEjt1/2 + aEj-1/2) + fXR,.i+1(JEj+1/2 + aEj+3/2 * 

The charge density increment in both cases is dp = -(Pit ,,2 - Pj_,,2)/Ax, which 
involves 6Ej, ,,? and SEj_ ,,2 in the simplified scheme and SEjm 3j2, 6E,i.. ,,2, 6E,+ ,,2, 
and sEjt 312 for strict differencing. 

Thus, both the difference in definitions of x and the different stencils on 6E 
contribute to the numerator of (79) and hence slow the convergence. Rapid variations 
in plasma density lead to a loss of convergence through the difference in suscep- 
tibilities. Spatial smoothing may help here. Perhaps tuning of the form of xj+ ,,2 will 
improve convergence of simplified methods. Even in a uniform plasma, the different 
electric field stencils cause a loss of convergence at short wavelengths. Currently we 
are studying the effect of incomplete convergence on stability. 

Thus, superlinear convergence is lost with simplified differencing, and convergence 
in simulations with rapid fluctuations or gradients in plasma density is apt to be 
slower. Spatial smoothing helps; Barnes et al. [9] find that, with consistent spatial 
smoothing, simulations with simplified differencing behave well. 

4.5. Strict versus Simple D@erencing 

Here we compare convergence and computational complexity for strict and simple 
spatial differencing. 
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With strict spatial differencing and consistent spatial smoothing, convergence to 
solutions of the field + particle equations is limited only by the magnitude of 
(q At’lMW~ x > , not by finite differencing or particle weighting errors. 

In Section 4.3.4 we outlined the derivation of a two-dimensional field equation in 
which 21 grid points were coupled. These matrix coupling coefficients and p require 
accumulation on the grid of eight independent quantities from the particles: the 
particle moments { 1, x, y, xy, x2, y2, xy2, x’v} calculated with respect to the cell 
centers, or the equivalent. Note that the first four moments are equivalent to the 
charge density which must be calculated in any case. 

The Hamiltonian solve is much simpler, with only nine grid points coupled and 
requiring the equivalent of accumulation of six different quantities from the particles: 
(1, x,y, xy, x2,y2}. Furthermore, the symmetries of the Hamiltonian 1 in Eq. (66) 
and hence the symmetry of the matrix field equation, allow reduction of the data to 
be accumulated from the particles to five quantities at each grid point. 

These formulations have been systematically derived, strictly following rules for 
performing spatial differences, in order to have good convergence properties, but 
require considerably more data from the particles than the ad hoc scheme in 
Section 3.4. 

5. SUMMARY AND FUTURE DIRECTIONS 

This paper has examined in detail the formulation and structure of an implicit 
algorithm for solving the coupled particle equations of motion and Poisson equation 
for the electrostatic field. Some of the important contributions of this work are as 
follows. We systematically derived direct implicit particle simulation schemes in 
general and provided specific examples in one and two dimensions. Our algorithms 
use particle data directly without introducing fluid moment equations and signifi- 
cantly relax the time-step constraints of conventional particle simulation schemes. 
Demonstration and application of these methods were described elsewhere [3,9]. 
Addressed here for the first time is the convergence of the necessarily approximate 
implicit solution of the coupled field and particle equations. We considered the 
remaining restrictions on At. Although upe At * 1 is allowed, accuracy (but not 
stability) of particle trajectories and the plasma collective response requires 
(kv At\ 5 1, and resolution of particle trajectories and accurate solution of the 
coupled field and particle equations lead to the constraint wt, At 5 1. 

A number of topics for continued research in this area immediately come to mind. 
We have begun to construct a direct implicit electromagnetic algorithm. Further 
research should examine the potential for and limitations of simplified differencing in 
both the direct implicit and implicit moment methods. For example, we have a 
demonstration of superlinear convergence only for strict differencing with consistent 
smoothing and with inclusion of the Newton-Raphson correction to x. Convergence 
with simplified differencing is slower at short wavelengths tix, for large field 
gradients, and for sharply varying density profiles. It is conceivable that these 
wavelengths may remain stable nonetheless due to phase mixing (density pertur- 
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bations decay ballistically as exp(-~k2u~t2) [28]). We have learned how to alter the 
algorithm to obtain exact momentum conservation, with strict or simplified 
differencing, without iteration. 

We have begun to analyze the linear dispersion relation and stability of oscillations 
including the effects of inconsistent spatial smoothing, ad hoc differencing, and use of 
E, and other first predictions for EIp+!, . We find a connection between the 
modification of the dispersion relation and the loss of convergence as calculated in 
Sections 3.6 and 4.4. Numerical stability can be compromised, especially at short 
wavelengths. However, the analysis also suggests ways of performing inconsistent 
spatial smoothing and ad hoc differencing that preserve stability. Convergence and 
linear dispersion properties can guide the design and use of new schemes. 

Additional computational savings may be accrued by combining direct implicit 
solution of the field and particle equations with sub-cycling (5 J or orbit-averaging 
[ 6, 71, in which one or more particle species are advanced over many small time steps 
with implicitly predicted fields that evolve on a longer time scale. Experience with 
implicit algorithms will undoubtedly suggest other research topics. 

APPENDIX A: RELATION BETWEEN IMPLICIT MOMENT 
AND DIRECT IMPLICIT METHODS 

Here we compare and contrast the “direct” and “moment” approaches to implicit 
particle-in-cell plasma simulation. In the implicit moment method ] 1, 2 ] the time- 
advanced charge density is expressed using velocity moment equations, which are 
closed by accumulating a flux and stress tensor from particles at the known time level 
n. The electric field is at the advanced time level. An elementary version of the 
implicit moment equation method is 

.I 
J -J n+1/2 - n-1/2 -$+‘.P,-p,E,), (A-1) 

where @, J, P) 3 n(q, qv, mvv) are formed as sums over known particle coordinates, 
while (j’,p’) are fluid quantities. Eliminating jA+ ,,2, 

V~En+, +~Ar?V.@,E,,+,)=p,-AtV. 64.3) 

To explain the relationship between the direct and moment approaches, Mason 
observed that the right-hand side is equal to a field-free extrapolation of the charge 
density obtained by setting E,, , = 0 in Eq. (A.l), and therefore corresponds to the 
charge density pyj, in (8) or (9) which was formed from the positions (g,,, ,} 
obtained from the particle equations of motion with E,,, , set to zero. The other 
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difference between (A.3) and (8) is that the susceptibility term in (8) uses particle 
positions at time n + 1 while the analogous term in (A.3) uses positions at time n. 

Thus, the implicit moment and the direct implicit methods can be closely related. 
Of course, important differences persist. For example, collection of the stress tensor P 
from known data leads to a stability constraint kv,dt 5 1 that does not arise in our 
direct method. We believe that the particle equations themselves are a better guide to 
the particles’ field-free motion, and therefore to the right hand side of (A.3), than are 
moment equations. 

As with our Section 3.4, in differencing the implicit moment equations, consistency 
with the particle force calculation is not attempted. When such consistency is not 
required, the direct method provides a simpler field equation and requires less 
computational work for the particles. If strong convergence to solutions of the 
field + particle equations is desired, we provide in Sections 3 and 4 a systematic 
expansion procedure that leads naturally both to a strict differencing scheme with 
consistent spatial smoothing for which convergence is most conservatively expected, 
and to a straightforward iteration procedure. 

APPENDIX B: POSITIVITY OF THE FIELD MATRIX EQUATIONS 

To show that the matrix operator in the field equation for the Hamiltonian model 
is a positive matrix, multiply the right-hand side of (60a) by V, Sdj and sum over j. 
Using (59), 

=-V~~b),(v’61),+\.Bdr’~ vv,~~js(xj-xi) 
1 I I [ j 1 

2 

. 

The particle term is positive for any Sd; therefore the matrix is positive if the 
representation of -V* is positive. To show positivity when (57) is used for the 
Laplacian and to make connection to the continuum case, we write the particle sum 
as an integral, as in Eq. (60b). Denoting the field solve matrix by A, we obtain 

P.1) 

if 1 f X(X) > 0 everywhere, as is the case when x is given by (7). When x is a tensor, 
as in the magnetized case (Section 3.7), only the symmetric part contributes. 
Equation (B.l) is a direct analogue to the continuum result, 

-j. dx@‘. [l+x]V#=l dx[Vi12[l+~1-~~d~~(l+~)~V~. 03.2) 
V V 

Note that 1 +x may become negative if the Newton-Raphson correction of 
Appendix C is used. 
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The simplified algorithm of Section 3.4 also leads to a positive matrix. The field 
solve matrix A is given in one dimension by (61) but now we say nothing more about 
1 than that 1 + x > 0. Multiply (6 1) by dx $ji and sum to form the inner product 

(B.3a) 

=Ax~ (1 + Xj+ l/2 
j )( 

@j+l -@j ’ 
Ax ) “* 

In the second sum in (B.3a) we have redefined index j as j t 1, then combined the 
two sums term by term to obtain (B.3b) (plus boundary terms which are commonly 
zero). This result is directly analogous to (B.2). In addition to being positive, the 
matrix is an “M-matrix,” i.e., all off-diagonal elements are <O. This is obvious from 
(61) in one dimension, and is true also in two dimensions. 

To show that the matrix for the strict, linear-weighting case (Section 4.3) is 
positive we proceed similarly, using (51), (70)-(71), and (73b), 

AX x:Svj(V * XV S$)j = AX x 6vj pj+ l/2 - 'j-112 

1 j Ax 

=AX~.~~~j+,;,,j,+Xj+1;2,j’+I 
i j ’ 

where 

olj+ Il2,j’ f Xj+ I/Z,j’+ 1) 

=g”‘~~AX[s,(X,,-Xi)+S,(X,,,,-Xi)JS~~,(xi,,;2-Xi) 
I 

is positive when S is a spline function, as here. 
In the second linear-weighting form, where the acceleration is interpolated from 

6Ej+ 112 = -<@j+ 1 - 6#j)/Ax, we find from (77) 

Ax~‘~w~(V.XV~~)~=AXCCX~+,/~,~,+,/, 
&j’+ 1 - +j’ 

Ax 
. (B.5) 

i j j ’ 

With x given by (78), we see this is positive. 
Although (43) is neutral in its effect on positivity of the field equation, a 

straightforward central differencing of the antisymmetric terms arising when the 
plasma is magnetized results in a loss of positivity [29]. The differencing of antisym- 
metric terms is dealt with in [30]. 

In summary, in each case the matrix is positive if x > 0. For the simplified and the 
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Hamiltonian cases, the matrix is also symmetric. These properties are helpful to 
iterative solution of the field equation in two dimensions, where direct solution 
methods are often impractical. 

APPENDIX C: NEWTON-RAPHSON CORRECTION TO PARTICLE POSITION 

In Section 3.5.2 we showed there is a limitation on At* aE/ax due to an approx- 
imation used in evaluating 6x. Here we reopen this question, to see the effect on our 
finite-difference field solution of using the more accurate Newton-Raphson solution 
for 6x, Eq.(37). Since Nj+ ,,* = [ 1 - (/?q At*/m) aE/axlj+ l,z is constant within a cell, 
for linear weighting, this factor may be removed from the particle sum for each 
species. 

+XL,j= IoINj+~p,QlAt2 T 
m ieJTl/* 

sI(xj - xi), 

+XR,j+I = (PINj+ 1/2) $At’ 2 s*(xj+ 1 -xi>- 
icjtll2 

It is very convenient that the denominator does not need to be accumulated for each 
particle, but is added to x later. However, there are several awkward features. The 
field equation becomes nonlinear. In two or three dimensions this factor becomes a 
matrix operation. This correction can cause 1 +x to become negative, which affects 
the solution of the field equations (Appendix B). In short, we do not recommend use 
of this Newton-Raphson factor, nor do we know anyone who has. 
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